Related literature. The 4a,9,9a,10-tetrahydro-9,10-obenzenoanthracene-1,4-diones are intermediates in the synthesis of triptycenes (Bartlett, Cohen, Cotman, Kornblum, Landry & Lewis, 1950). The above compounds and the corresponding triptycenes have been the subjects of EPR investigations (Quast & Fuchsbauer, 1986; Bertsch & Reinhardt, 1986).

We thank the Welch Foundation (P-074) and the TCU Research Fund for financial support and Professor Paul Bartlett for the sample.

References

- BARTLETT, P. D., COHEN, S. G., COTMAN, J. D., KORNBLUM, N., LANDRY, J. R. & LEWIS, E. S. (1950). J. Am. Chem. Soc. 72, 1003–1004.
- BERTSCH, A. & REINHARDT, G. (1986). Angew. Chem. 98, 361-362.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- Nicolet Instrument Corporation (1986). SHELXTL for Desktop 30 (Microeclipse), PN-269-1040340. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- QUAST, H. & FUCHSBAUER, H. L. (1986). Chem. Ber. 119, 1016-1038.

Acta Cryst. (1988). C44, 383-384

Structure of 4-O-Ethylascofuranone

By YOSHIHARU NAWATA,* HIROSHI SASAKI, KIYOSHIGE OCHI AND KUNIO ANDO Research Laboratories, Chugai Pharmaceutical Co. Ltd, Takada, Toshima, Tokyo 171, Japan

(Received 28 September 1987; accepted 29 October 1987)

Abstract. [S-(E,E)]-5-Chloro-4-ethoxy-2-hydroxy-6methyl-3-[3-methyl-7-(tetrahydro-5,5-dimethyl-4-oxo-2-furanyl)-2,6-octadienyl]benzaldehyde, $C_{25}H_{33}ClO_5$, $M_r = 448.99$, orthorhombic, $P2_12_12_1$, a = 11.724 (1), b = 34.626 (2), c = 6.122 (1) Å, V = 2485.2 Å³, Z =4, $D_x = 1.200$ g cm⁻³, λ (Cu K α) = 1.5418 Å, $\mu =$ 16.13 cm⁻¹, F(000) = 960, T = 298 K, final R = 0.050for 2423 unique reflections $[F_o^2 > 2\sigma(F_o^2)]$. The title compound has a 'round' molecular conformation, turning at the middle of the sesquiterpenoid moiety. The intramolecular van der Waals contacts, observed at the center of the molecule, stabilize the conformation.

Experimental. Colorless prisms of 4-O-ethylascofuranone from *n*-hexane-acetone [1:1 (v/v)]. Crystal size $0.40 \times 0.35 \times 0.20$ mm, Enraf-Nonius CAD-4 κ -cradle diffractometer, Cu K α radiation, graphite monochromator, θ -2 θ scan with scan speed 0.87- $4 \cdot 12^{\circ} \text{ min}^{-1}$ in θ , scan width $(0 \cdot 40 + 0 \cdot 14 \tan \theta)^{\circ}$. Range of indices, $0 \le h \le 14$, $0 \le k \le 43$, $0 \le l \le 7$ $(2\theta < 150^\circ)$. Lattice constants determined based on 25 2θ values ($26 < 2\theta < 55^{\circ}$). Variation of standard <0.6%; 2958 unique reflections measured; 2423 observed reflections with $F_o^2 > 2\sigma(F_o^2)$. Systematic absences h00, h odd; 0k0, k odd; 00l, l odd. No corrections for absorption. Structure solved by direct methods with MULTAN (Main, Woolfson & Germain, 1971). Refined by full-matrix least squares. The locations of all H atoms were found from a difference

0108-2701/88/020383-02\$03.00

Fourier map. Non-H atoms refined with anisotropic thermal parameters, and H atoms with isotropic thermal parameters $(B = 5 \cdot 0 \text{ Å}^2: \text{ fixed})$. $\sum w(|F_o| - |F_c|)^2$ minimized; $w = 1 \cdot 0$ for $F_o < 1011 \cdot 59$, $w = (1011 \cdot 59/F_o)^2$ for $F_o \ge 1011 \cdot 59$. Final $R = 0 \cdot 050$, $wR = 0 \cdot 049$, $S = 7 \cdot 23$ for 413 variables, secondary-extinction factor $g = 2 \cdot 50$ (4) $\times 10^{-6}$ $||F_o| = |F_c|/(1 + gIc)]$; $\Delta/\sigma < 0.47$, largest peak in final ΔF map + 0.21 e Å⁻³; atomic scattering factors from *International Tables for X-ray Crystallography* (1974); programs: Enraf-Nonius *SDP* (Frenz, 1984), *ORTEPII* (Johnson, 1976). The structure of the title

Fig. 1. A perspective view of the molecule with the numbering scheme.

© 1988 International Union of Crystallography

^{*} To whom all correspondence should be addressed.

Table 1.	Final fractional coordinates and equivalen	t				
isotropic	temperature factors for non-H atoms with	h				
e.s.d.'s in parentheses						

$B_{cq} = \frac{4}{3} \sum_{i} \sum_{j} B_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$						
	x	v	z	$B_{eq}(\dot{A}^2)$		
C(1)	0.7198 (3)	0-1045(1)	-0.0425 (7)	4.32 (9)		
C(2)	0.7068 (3)	0.1401(1)	0.0617 (8)	4.46 (9)		
C(3)	0-6463 (3)	0-1431 (1)	0.2587 (8)	4.23 (9)		
C(4)	0.6007 (3)	0.1097(1)	0.3425 (7)	3.93 (8)		
C(5)	0-6118 (3)	0.0743 (1)	0.2397 (8)	4.06 (8)		
C(6)	0.6715 (3)	0.0707(1)	0.0430 (8)	4.29 (9)		
C(7)	0.6360 (4)	0-1817(1)	0.3735 (9)	5.1(1)		
C(8)	0.5423 (4)	0-2059(1)	0.2756 (8)	4.60 (9)		
C(9)	0.4582 (4)	0.2243 (1)	0.3808 (8)	4.37 (9)		
C(10)	0.3735 (4)	0.2486(1)	0.2550 (9)	4.9(1)		
C(11)	0.2468 (4)	0.2367(1)	0.2811(9)	5-2(1)		
C(12)	0.2237 (4)	0-1955(1)	0.2184 (8)	4.7(1)		
C(13)	0.1616(3)	0-1699(1)	0.3254 (8)	4.50 (9)		
C(14)	0.1418 (4)	0.1311(1)	0.2279 (8)	4.6(1)		
O(15)	0.1715 (2)	0.10173 (7)	0.3841 (6)	5.21 (7)		
C(16)	0.1183 (4)	0.0664 (1)	0.3317(9)	5.2(1)		
C(17)	0.0185 (4)	0.0778(1)	0.189(1)	6.5(1)		
C(18)	0.0200 (4)	0.1206(1)	0.164 (1)	6.4 (1)		
C(19)	0.7857 (4)	0.1030(2)	-0.2467 (9)	6.1(1)		
O(20)	0.8341(3)	0.1316(1)	-0.3234 (6)	7.32 (9)		
O(21)	0.7518(3)	0.17302 (8)	-0.0178 (6)	6.30 (8)		
O(22)	0.5507 (2)	0.11069 (9)	0.5453 (5)	5-18 (7)		
C(23)	0-4269 (4)	0-1139(1)	0.5441(9)	5.4(1)		
C(24)	0.3900 (5)	0.1084(2)	0.775 (1)	8.8 (2)		
C(25)	0.6859(4)	0.0325(1)	-0.070(1)	6.4 (1)		
C(26)	0.4422 (5)	0.2236(1)	0.6221 (9)	6-3(1)		
C(27)	0-1035 (6)	0.1771(1)	0.541(1)	8.1 (2)		
C(28)	0.1951 (5)	0.0399(1)	0.201(1)	7.6(2)		
C(29)	0.0797 (6)	0.0471 (2)	0.540(1)	9.0 (2)		
O(30)	-0.0496 (3)	0.0553(1)	0.111(1)	11.5(1)		
CI	0.5527(1)	0.03363 (3)	0.3619(2)	6.08 (3)		

Table 2. Bond lengths (Å) and angles (°) with e.s.d.'s in parentheses

Q(1) Q(2)	1 204 44	Q(10) Q(11)	
C(1) - C(2)	1-396 (6)	C(10) - C(11)	1.550(6)
C(1) - C(6)	1-400 (6)	C(11) - C(12)	1.502 (6)
C(1) - C(19)	1.4/0(/)	C(12) - C(13)	1.321 (6)
C(2) - C(3)	1.403 (7)	C(13) - C(14)	1.490 (6)
C(2)-O(21)	1.349 (5)	C(13)-C(27)	1.504 (8)
C(3)-C(4)	1-374 (5)	C(14)-O(15)	1.438 (5)
C(3)-C(7)	1-514 (6)	C(14)-C(18)	1.525 (7)
C(4)-C(5)	1-387 (6)	O(15)-C(16)	1-410 (5)
C(4)-O(22)	1.373 (5)	C(16)-C(17)	1.512(7)
C(5)-C(6)	1-398 (6)	C(16)-C(28)	1-511 (7)
C(5)-Cl	1.738 (4)	C(16)-C(29)	1.511 (9)
C(6)-C(25)	1.503 (6)	C(17)-C(18)	1-493 (6)
C(7)-C(8)	1-506 (6)	C(17)-O(30)	1.212 (6)
C(8)-C(9)	1.339 (6)	C(19)-O(20)	1.235 (6)
C(9)-C(10)	1.512 (6)	O(22)-C(23)	1-456 (5)
C(9)-C(26)	1-489 (7)	C(23)-C(24)	1-492 (8)
C(2) = C(1) = C(6)	121.4 (4)	C(9) = C(10) = C(11)	115.5 (4)
C(2) = C(1) = C(19)	118.4 (4)	C(10) = C(11) = C(12)	113.4 (4)
C(6) = C(1) = C(19)	120.1 (4)	C(11) - C(12) - C(13)	127.5 (5)
C(1) = C(2) = C(3)	121.0 (4)	C(12) = C(13) = C(14)	119.5 (4)
C(1) = C(2) = O(21)	122.7 (4)	C(12) = C(13) = C(27)	125.1 (4)
C(3) = C(2) = O(21)	116.3 (4)	C(14) = C(13) = C(27)	115.4 (4)
C(2) = C(3) = C(4)	117.0 (4)	C(13) - C(13) - C(15)	109.5 (4)
C(2) = C(3) = C(4)	120.4 (4)	C(13) - C(14) - C(13)	117.5 (4)
C(2) = C(3) = C(7)	120.4 (4)	O(15) = O(14) = O(18)	102 2 (2)
C(4) = C(3) = C(7)	122.5 (4)	C(14) = C(14) = C(16)	103.2 (3)
C(3) = C(4) = C(3)	122.0 (4)	C(14) = O(15) = C(16)	104 2 (2)
C(3) = C(4) = O(22)	119.0 (4)	O(13) = C(16) = C(17)	104.3 (3)
C(3) = C(4) = O(22)	118-1 (4)	O(13) = C(16) = C(28)	112.5 (4)
C(4) = C(5) = C(6)	121.1 (4)	O(13) = O(16) = O(29)	108.9 (5)
C(4) = C(5) = C(1)	118.9(3)	C(17) = C(16) = C(28)	108-4 (5)
C(0) = C(0) = C(0)	120.0(3)	C(17) - C(16) - C(29)	111.7 (4)
C(1) - C(0) - C(0)	116.8 (4)	C(28) - C(16) - C(29)	110.9 (4)
C(1) - C(6) - C(25)	121-2(4)	C(16) - C(17) - C(18)	108.0 (4)
C(5) - C(6) - C(25)	122.0 (4)	C(16) - C(17) - O(30)	124.8 (4)
C(3) - C(7) - C(8)	131-3(4)	C(18) - C(17) - O(30)	127-1 (5)
C(7) - C(8) - C(9)	127-6 (5)	C(14) = C(18) = C(17)	102.7 (4)
C(8) - C(9) - C(10)	120-2 (4)	C(1) - C(19) - O(20)	122-5 (5)
C(8) - C(9) - C(26)	124-2 (4)	C(4)-O(22)-C(23)	115-0 (3)
C(10) - C(9) - C(26)	115-6 (4)	O(22)-C(23)-C(24)	105-9 (4)

Fig. 2. Crystal structure projected along the c axis.

compound is shown in Fig. 1, and a projection of the crystal structure in Fig. 2. Positional parameters and equivalent values of the anisotropic temperature factors are given in Table 1, bond distances and angles are listed in Table 2.*

Related literature. Ascofuranone is an antibiotic (Sasaki, Okutomi, Hosokawa, Nawata & Ando, 1972) which possesses hypolipidemic (Sawada, Hosokawa, Okutomi & Ando, 1973) and antitumor activities (Magae, Hosokawa, Ando, Nagai & Tamura, 1982). (\pm) -Ascofuranone was successfully synthesized by Mori & Fujioka (1984). For the preparation of 4-O-ethylascofuranone and a preliminary report on the molecular structure see Ando, Sasaki, Hosokawa, Nawata & Iitaka (1975).

* Lists of anisotropic thermal parameters, H-atom coordinates, torsional angles, least-squares planes and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44473 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- ANDO, K., SASAKI, H., HOSOKAWA, T., NAWATA, Y. & IITAKA, Y. (1975). *Teirahedron Lett.* pp. 887–890.
- FRENZ, B. A. (1984). Enraf-Nonius Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MAGAE, J., HOSOKAWA, T., ANDO, K., NAGAI, K. & TAMURA, G. (1982). J. Antibiot. 35, 1547–1552.
- MAIN, P., WOOLFSON, M. M. & GERMAIN, G. (1971). Acta Cryst. A27, 368-376.
- MORI, K. & FUJIOKA, T. (1984). Tetrahedron, 40, 2711-2720.
- SASAKI, H., OKUTOMI, T., HOSOKAWA, T., NAWATA, Y. & ANDO, K. (1972). *Tetrahedron Lett*. pp. 2541–2544.
- SAWADA, M., HOSOKAWA, T., OKUTOMI, T. & ANDO, K. (1973). J. Antibiot. 26, 681–686.